Datenblatt | Data sheet

Aluminium oxide grinding powder / grinding balls

Balls of oxide with polycrystalline structure. Good mechanical properties and good corrosion, abrasion and heat resistance. Self-lubricating, lightweight, electrical insulators. Laboratory and industrial tests have confirmed that the use of alumina grinding powder or balls is advantageous from the point of view of both wear resistance and workability.

In metal recovery, grinding/polishing is one of the main cost factors, alumina grinding media effectively contribute to the reduction of this industrial cost.

The microspheres have optimal properties (chemical composition, hardness, roundness, specific gravity) and are particularly suitable for use in ultra-fine grinding mills.

Corrosion resistance

Resistant: Water, salt solutions, acids, also solid in aggressive environments

Unstable: In contact with hydrofluoric acid, hydrochloric acid, warm sulfuric acid and strong alkali solutions

Material

Technical name	Alternative Name	Abbreviation	% Oxide
Dialuminium trioxide	Aluminum oxide	Al2O3	89,0 - 91,0

Physical / technical characteristics

Characteristic	Unit	Туре	Value
Density	g/cm ³	Physical	3,56 - 3,7
Bulk density	kg / I	Physical	~ 2,20
Water absorption	%	Physical	-
Color			Ivory white
Hardness	HRC	Mechanical	77 - 83

Availale with

Diameter mm

0,6 - 1,2 / 0,75 - 1,5 / 1,0 - 2,0 / 1,5 - 2,5 / 2,5 - 3,5 / 3,0 - 4,0 / 3,0 - 5,0 / 3,5 - 4,5 / 5,0 - 7,0 / 6,0 - 7,0 / 7,0 - 9,0 / 9,0 - 11,0 - 10,0 - 1

